lunedì, Novembre 25CNA Catanzaro
Shadow

Attività

  • Ouopio28 ha inviato un aggiornamento 2 anni, 10 mesi fa

    One thing that all schematics have in common is the utter inability to drive a motor, or blink an LED, or filter out noise, or do any of the other useful and interesting things that we expect electrical systems to do. A schematic is, after all, just a drawing. To actually accomplish something with a circuit, we need to translate its schematic into physical components and physical interconnections. Simple schematics can often be realized on a breadboard, but the vast majority of circuit designs enter the physical realm in the form of a printed circuit board, or PCB for short.

    The Structure of a PCB

    A very basic printed circuit board is a flat, rigid, insulating material that has thin conductive structures adhering to one side. These conductive structures create geometric patterns consisting of, for example, rectangles, circles, and squares. Long, thin rectangles function as interconnections (i.e., the equivalent of wires), and various shapes function as connection points for components.

    A printed circuit board such as the example in the image has only one conductive layer. A single-layer PCB is very restrictive; the circuit realization will not make efficient use of available area, and the designer may have difficulty creating the necessary interconnections.

    Incorporating additional conductive layers makes the 2 Layers PCB more compact and easier to design. A two-layer board is a major improvement over a single-layer board, and most applications benefit from having at least four layers. A four-layer board consists of the top layer, the bottom layer, and two internal layers. (“Top” and “bottom” may not seem like typical scientific terminology, but they are nonetheless the official designations in the world of PCB design and fabrication.)
    https://www.ibetechnology.net/pcb/2-layers-pcb/