-
Koipdd69 ha inviato un aggiornamento 2 anni, 8 mesi fa
More about Precision Machining
Precision machining is what produces a huge number of both large and small objects that we use in daily life. Each intricate piece that makes up an object requires one level or another of a machinist’s skills. Likewise, a tool or machine that has been worn down will often require machine tool calibration, welding, or grooving by a precision machinist. From the production of aircraft aluminum alloys to surgical bone drilling devices and custom automotive tools, precision machining reaches into every technology and industry, including oil and gas. In other words, if an object contains parts, it required precision machining.Quality precision machining requires the ability to follow extremely specific blueprints made by CAD (computer-aided design) or CAM (computer-aided manufacturing) programs like AutoCAD and TurboCAD. The software can help produce the complex, 3-dimensional diagrams or outlines needed in order to manufacture a tool, machine, or object. These blueprints must be adhered to with great detail to ensure that a product retains its integrity. While most precision machining companies work with some form of CAD/CAM programs, they still work often with hand-drawn sketches in the initial phases of a design.
Precision machining is used on a number of materials including steel, bronze, graphite, glass, and plastics to name a few. Depending on the size of the project and the materials to be used, various precision machining tools will be used. Any combination of lathes, milling machines, drill presses, saws and grinders, and even high-speed robotics may be used.The aerospace industry may use high-velocity machining, while a woodwork tool-making industry might use photo-chemical etching and milling processes. The churning out of a run, or a specific quantity of any particular item, can number in the thousands, or be just a few. Precision machining often requires the programming of CNC devices which means they are computer numerically controlled. The CNC device allows for exact dimensions to be followed throughout the run of a product.
Cemented carbides have been widely applied in cutting tools and wear-resistant components due to their ultrahigh hardness and good wear resistance. However, the disadvantages of limited impact toughness and high cost have restricted their further application. Consequently, cemented carbides are usually joining with ductile steels to combine the advantages of both. Among various materials joining technologies, brazing have been an effective method to achieve high quality dissimilar cemented carbide joints. In this paper, the research status of cemented carbide brazing is reviewed. The materials utilized as brazing filler metal in cemented carbide brazing joints are summarized in detail. Researchers have done lots of works utilizing Cu based and Ag based brazing filler metals which are the most commonly used interlayers in brazed joints of cemented carbide and ductile steel. The effects of different filler metal on wettability, microstructure, phase constitution and mechanical properties of brazed cemented carbides joints are analysed. Besides, a series of newly developed brazing filler material such as nickel-based high temperature brazing filler metal, amorphous brazing filler metal and high entropy alloy brazing filler materials are also involved. These newly developed brazing filler metals have shown great potential in fabricating high quality joints. Finally, the current issues of cemented carbide brazing are reviewed and the develop trend is predicted.
http://www.zzcarbidebrazed.com/carbide-blanks/