-
Ouopio35 ha inviato un aggiornamento 3 anni fa
Experimental Investigation of Steel Plate Shear Walls under Shear-Compression Interaction
This paper describes the derivation of the equation for evaluating the strength of bridge steel plate reinforced concrete structure (SC) and the experimental results of SC panels subjected to in-plane shear.
Two experimental research programs were carried out. One was the experimental study in which the influence of the axial force and the partitioning web were investigated, another was that in which the influence of the opening was investigated.
In the former program, nine specimens were loaded in cyclic in-plane shear. The test parameters were the thickness of the surface high building steel plate, the effects of the partitioning web and the axial force. The experimental results were compared with the calculated results, and good agreement between the calculated results and the experimental results was shown.
In the later programs, six specimens having an opening were loaded in cyclic in-plane shear, and were compared with the results of the specimen without opening. FEM analysis was used to supplement experimental data. Finally, we proposed the equation to calculate the reduction ratio from the opening for design.
Four scaled one-storey single-bay steel plate shear wall specimens with unstiffened panels were tested to determine their behaviour under cyclic loadings. The shear walls had moment-resisting beam-to-column connections. Four different vertical loads, i.e., 300 kN, 600 kN, 900 kN, and 1200 kN, representing the gravity load of the upper storeys were applied at the top of the boundary columns through a force distribution beam. A horizontal cyclic load was then applied at the top of the specimens. The specimen behaviour, envelope curves, axial stress distribution of the infill steel plate, and shear capacity were analyzed. The axial stress distribution and envelope curves were compared with the values predicted using an analytical model available in the literature.